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and recommend congestion-mitigation strategies to transportation-system decision-makers. A 

tabu-search–based optimizer determines different network design strategies on the road network 

while a traffic simulator evaluates goodness of fit. The tool is tested with real traffic data. 



Section 1
Introduction

Traffic congestion has grown considerably in the United States. The hours of delay per traveler is
more than five times greater than it was 20 years ago. In 2005, the nation’s drivers experienced a
total of 4.2 billion hours (about 38 hours per driver) in traffic delays. Along with fuel waste, this
translates to a cost of about $78.2 billion. Recent growth inmanufacturing in the southern United
States, especially in the automotive industry, has increased freight movement with regard to raw
materials, in-process parts, and finished goods. Although this indicates economic growth for the
southern states, it causes high utilization of state and federal highways and potential congestion in
the region’s urban areas.

The investigation of transportation networks is typicallystudied using a network design or
stand-alone simulation. A network design is useful for identifying problem areas on a network
and suggesting improvements, but it fails to capture the stochastic, dynamic nature of the traffic
flow, thereby giving a false sense of the congestion. Stand-alone simulation provides a better
representation of the traffic flow by guessing the resource settings and strategies that would allow
the system to perform at its best. This is difficult due to the large number of possible
combinations of mitigation strategies and problem parameters, as well as constraints on budgets,
personnel, and other resources. To remedy the issues of these common solution approaches, we
employ a simulation-optimization approach that efficiently searches for the best combination
using smart search techniques.

In this report, we aim to assist transportation-system designers and decision-makers in dealing
with the root causes of urban traffic congestion (e.g. capacity bottlenecks, traffic incidents, work
zones) by developing a decision support tool based on simulation optimization that evaluates,
analyzes, and recommends mitigation strategies to lessen the congestion. To investigate and
evaluate potential mitigation strategies, we examine the incorporation of an optimization
technique, in the form of a tabu-search meta-heuristic, with an existing traffic-simulation model
created using TRANPLAN traffic simulation software. TRANPLAN is an integrated suite of
programs for forecasting the impacts of alternative land-use scenarios or transportation networks
on highway and public-transit systems (The Urban Analysis Group, 1998).

In this problem, our goal, given a congested traffic network,is to minimize the total time traveled
on the network by determining the optimal set of congestion mitigation strategies to implement.
Typical mitigation strategies include, but are not limitedto, additional capacity, reversible lanes,
dedicated lanes, variable toll schedule, and new roads. Theimplementation of these types of
strategies are restricted by operational constraints suchas manning capacity and budget
limitations. In our investigation, we concentrate on additional capacity strategies while adhering
to budgetary constraints.

This research effort explores new areas of study with respect to mitigating traffic congestion in an
urban environment. The task of determining the types of mitigation strategies to employ and the
location of their implementation typically falls on regional planning commissions (RPCs) or
metropolitan planning organizations (MPOs). This is a challenging and cost-prohibitive task given
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the large number of possible strategy combinations and potential locations. Thus, the purpose of
this research is to develop a decision support tool to aid transportation planners in determining the
best options without the need for exhaustive alanlysis of alternatives. The decision support tool
helps identify the congestion points and potential mitigation strategies to alleviate congestion as
well as evaluate the impact of the strategy alternatives on the traffic network. Furthermore, a
sensitivity analysis may be performed regarding the robustness of the suggested solution due to
different resource levels, traffic scenarios, and freight-movement expectations.

The remainder of the paper is organized as follows. In the next section, we briefly review the
traffic-mitigation and simulation-optimization literature and summarize the work related to the
problem under consideration. In Section 3, we discuss the general framework of our
simulation-optimization approach. Next, we explain the details of the metaheuristic-optimization
and simulation components in Sections 4 and 5. In Section 6, we describe a scenario based on a
real traffic network, demonstrate the performance of the simulation-optimization methodology,
and illustrate the potential of the solution approach. Finally, in Section 7, we summarize our
findings and conclude the paper by discussing the potential impact of this work.
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Section 2
Literature Review

Metropolitan areas worldwide are experiencing an increasein traffic congestion. In many cases,
the congestion-mitigation alternatives of constructing new routes and increasing roadway capacity
have become limiting and often cost prohibitive. Therefore, means to improve the planning and
operational aspects of transportation networks to maximize the utility of the existing
transportation network are the focus of transportation research and current practices. Our problem
borrows from and contributes to three main areas of research: network design,
congestion-mitigation simulation modeling, and simulation optimization. We review work from
these areas most related to our paper.

2.1 Network Design/Redesign

The network design problem (NDP) has long been recognized asone of the most difficult and
challenging in transportation. It involves choosing the best from a set of projects and making
decisions that optimize an objective (e.g., minimizing total travel time) while keeping resource
consumption (e.g. budget) within its limits. This problem is difficult to solve because of its
combinatorial nature and non-convexity of the objective function (Yang and Bell, 1998).
Historically, this problem has been posed in three forms: a discrete form dealing with the addition
of new links to an existing road network, a continuous form dealing with the optimal capacity
expansion of existing links, and the mixed NDP in which the enhancement and addition of road
segments to an existing transport network is treated jointly rather than separately. For rural
environments, or networks, that have the capability to change the capacity of their edges,
researchers shift their focus to, but do not always solely rely on, capacity expansion. Regardless
of form, the objective is to optimize a given system-performance measure (e.g. reducing
congestion time or minimizing total cost of transportation) while accounting for the route choices
of the network users and system constraints such as budget and other resource limitations.

Over the last few decades, significant attention has been given to the transportation-network
design problem and to reducing traffic congestion and travelcosts. There are several approaches
to solve the NDP. Steenbrink (1974), Wong (1984), and Magnanti and Wong (1984) survey earlier
algorithms for solving this problem. Yang and Bell (1998) present a recent endeavor in the review
of NDP models and algorithms. One of the earlier exact optimization approaches—a
branch-and-bound algorithm—is presented by LeBlanc (1975). Merchant and Nemhauser (1978)
modeled a directed network where traffic flows move toward a single destination as a linear
programming formulation and solved it using decompositionalgorithms. Other
exact-optimization solutions for the NDP involve branch-and-cut algorithms (Gunluk, 1999),
cutting-plane algorithms (Pesenti, et al., 2004), stochastic programming models (Riis and
Andersen, 2002; Riis and Lodahl, 2002), joint optimizationfollowing Wardrop’s principles
(Chiou, 2005), and using different types of modeling programs (Athanasenas, 1997; Maze and
Kamayab, 1998; Ukkusuri and Waller, 2008). However, the precision of the optimization
algorithms in solving the problem makes the solutions computationally expensive when the
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solution space exceeds even twenty alternatives, which is afairly small number. Heuristic
approaches provide a remedy, as they encompass a wide range of alternatives to search. Among
the heuristic approaches, simulated annealing (Lee and Yang, 1994), ant-colony-based
metaheuristic (Poorzahedy and Abulghasemi, 2005), genetic algorithm (Yin, 2000), and particle
swarm optimization (Zhang and Gao, 2007) have been successfully implemented to solve larger
instances of the NDP. With this motivation, our work focuseson capacity expansion of existing
roads with a subset of selected strategies using local-search and tabu-search heuristics for the link
selection. Both local and tabu-search heuristics have beenused in the literature to solve
combinatorial optimization problems. In addition to theirsolution quality, their ease of
implementation makes them favorable choices.

2.2 Traffic Simulations

As transportation systems have become more complex and increasingly congested, simulation
modeling has gained recognition as an effective approach for quantifying traffic operations.
Simulation models are designed to model any combination of surface street and freeway facilities,
including most signal control and other operational strategies. Thus, to cope with complex
transportation-planning tasks, traffic engineers are increasingly using traffic simulation as a
means for evaluating the effectiveness of new road designs.

Traffic-simulation models are often separated into three classes according to level of detail
(Erlemann and Hartmann, 2005): macroscopic, mesoscopic, and microscopic. Macroscopic
models are most common where traffic flow is emulated as a stream of particles subject to the
laws of fluid dynamics (Daganzo, 1995; Helbing, et al., 2002;Kotsialos and Papageorgiou, 2004;
Papageorgiou, 1990). On the other extreme, microscopic models focus on individual vehicles and
driving behavior. Macroscopic models typically simulate large road networks, and as a result use
fewer computational resources. However, macroscopic models usually provide less detail
compared to microscopic models. In this research, we contribute to the work involving
macroscopic simulation models by utilizing a model of this type and taking advantage of the
speed and high-level representation in the model.

Microscopic traffic simulation is a modeling approach and analytical tool increasingly used to
support planning and operational decisions. A number of microscopic models have been
developed for motorway networks, urban networks, and mixedcorridors (van Aerde, et al., 1997;
Yang and Koutsopoulos, 1996). Microscopic models provide abetter representation of time
dynamics, congestion build-up, and the interrelation between operations and impacts. For
instance, in urban networks with little or no room for road expansion, researchers turn their focus
to changing the timing of light signals (Cantarella, et al.,2006; Chiou, 2007; Wen, 2008), lane
changing and merging (Hidas, 2002), or the construction of intersections (Doniec, et al., 2006).
While solving for changes in signal timings, Wen (2008) combined the use of a simulation model
with a basic algorithm that determined how long the light would remain a certain color and when
that countdown would start. Chiou (2007) addressed the concept of reserved capacities in
signal-controlled networks. Cantarella, et al. (2006) created a solution that considered both the
coordination of the signal settings on adjacent intersections and the influence of the new system
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on the path choice of drivers. Hidas (2002), on the other hand, focused on lane-changing and
merging algorithms within a massive multi-agent simulation system in which driver-vehicle
objects were modeled as autonomous agents. For low levels ofcongestion, changing the timing of
traffic lights on a network is a reasonable approach to congestion mitigation. However, it is not a
reasonable approach for large networks since building a large-scale microscopic simulation model
is costly and demanding in terms of data inputs, calibrationefforts, and computational resources
(Balakrishna, et al., 2007).

Mesoscopic models, in contrast, bridge the gap between macroscopic and microscopic simulation
by using individual vehicles actuated through macroscopiccontrol variables. Mesoscopic models
(Chiu, 2009; Yang, 1997) consider packets of vehicles with similar characteristics (e.g. same
origin and destination) as autonomous entities and move them inside the network according to
macroscopic traffic-flow dynamics and specific route choice patterns. The intent of this type of
modeling is to take advantage of the strengths associated with microscopic and macroscopic
modeling. However, for this research, a macroscopic approach is still most appropriate since we
are dealing with mitigation strategies at a lower fidelity level.

2.3 Simulation Optimization

As we discussed in the previous section, even though simulation models are capable of capturing
complex system behaviors of transportation traffic networks (Helbing, et al., 2002; Herty and
Klar, 2003; Hidas, 2002; Owen, et al., 2000), they may require lots of development and time to
run, which typically makes them inadequate for solving optimization problems. Proposed
operational improvements for these networks are difficult to evaluate or to simulate accurately
because of the increased effect of vehicle interactions andimpact of design elements on traffic
flow, which occur under congestion. This situation is remedied by the simulation-optimization
approach in that it efficiently searches for the best combination of problem parameters using
smart search techniques.

A more formal definition of simulation optimization is provided by Law and McComas (2000) as
“the orchestration of the simulation of a sequence of systemconfigurations so that a system
configuration eventually is obtained that provides an optimal or near optimal solution.” The main
optimization approaches utilized in simulation optimization include random search (Andradóttir,
2005); response surface methodology (Barton, 2005); gradient-based procedures (Fu, 2005);
ranking and selection (Kim and Nelson, 2005); sample path optimization (Rubinstein and
Shapiro, 1993); and metaheuristics (Ólaffson, 2005), including tabu search, genetic algorithms,
and scatter search. Until a few years ago, the research on simulation optimization had focused on
theoretical developments (Fu, 2002). As Fu (2002) pointed out, there is a need for algorithms that
take advantage of the theoretical results of the literaturebut are still flexible and applicable to real
problems. Within the transportation literature, to the best of our knowledge, there is no other
research paper that takes advantage of the benefits of the simulation optimization for
traffic-congestion mitigation. Our paper contributes to this gap by developing a
tabu-search–based simulation-optimization approach fora road-network improvement problem.
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Section 3
General Model and Solution Framework

3.1 General Model

The overall goal of this research is to minimize overall travel time on the road network by
reducing congestion via determination of appropriate congestion-mitigation strategies. For this
purpose, we first present a formulation of our problem, whichis a generalization of the
single-destination dynamic traffic assignment problem presented by Merchant and Nemhauser
(1978). We represent the traffic network by a directed graphG = (N ,L), where
N = {1, . . . , i, . . . ,N} is the set of nodes andL = {1, . . . , l , . . . ,L} is the set of links. To alleviate
congestion, we consider a number of mitigation strategies to implement on this network, which is
represented asS = {1, . . . ,s, . . . ,S}. In the case of unlimited resources, one would implement the
best congestion-alleviation strategy on every congested link. However, in reality,
constraints—such as physical, budgetary, and environmental—exist that restrict unlimited
strategy implementation. In this paper, we explicitly consider budget constraints where the
implemented strategies cannot exceed a certain pre-set budget,B. To formulate the problem, we
define the following additional notation:

Parameters

T set of time intervals during the simulation run time,t = 1, . . . ,T.

I(i) the set of incoming links of nodei ∈N .

O(i) the set of outgoing links of nodei ∈N .

Pit number of vehicles entering at nodei at time intervalt, i ∈N andt ∈ T .

bsl budget requirement of strategyson link l , s∈ S andl ∈ L .

wsl(.) exit link function of link l , l ∈ L .

Decision Variables

xslt number of vehicles on linkl at time intervalt using strategys, s∈ S , l ∈ L , andt ∈ T .

uslt number of incoming vehicles to linkl at time intervalt under strategys, s∈ S ,

l ∈ L , andt ∈ T .

ysl 1, if strategys is implemented on linkl , s∈ S andl ∈ L .

Formulation

Min ∑
s∈S

∑
l∈L

∑
t∈T

Cslt(xslt) (NDP)
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subject to

xslt−xsl ,t−1 = uslt−wsl(xsl t−1), ∀l ∈ L ,∀t ∈ T , and∀s∈ S . (1)

∑
s∈S

∑
l∈I (i)

uslt−∑
s∈S

∑
l∈O(i)

wsl(xs,l ,t−1) = pit , ∀i ∈N ,∀t ∈ T , and∀s∈ S . (2)

∑
t∈T

xslt ≤Mysl, ∀l ∈ L , and∀s∈ S . (3)

∑
s∈S

∑
l∈L

bslysl ≤ B. (4)

xslt ≥ 0 anduslt ≥ 0, ∀l ∈ L ,∀t ∈ T , and∀s∈ S . (5)

ysl ∈ {0,1}, ∀l ∈ L and∀s∈ S . (6)

In this formulation,Cslt(xslt) represents the total vehicle hours due to all traffic flow on the
network.Cslt(.) is a function that represents the total vehicle hours due to strategyson link l
during time intervalt. This cost function takes the decision variablexslt, the number of vehicles,
as an input. Since there is no closed-form expression for this function, we use simulation for the
evaluation of a particular strategyson link l during time intervalt. The objective function ofNDP
aims to minimize the total vehicle hours and the total congestion in the network simultaneously.
The first set of constraints (1) are state equations expressing the conservation of vehicles on a link
l , l ∈ L . The second set of constraints (2) are flow-balance equations at every nodei, i ∈N of the
network. The third set of constraints (3) establishes the relationship between the continuous-flow
variables and the binary strategy-selection variables. Toestablish this relationship, we use a big
M-type formulation. Hence, the right-hand side of constraint set (3) is a large constant, bigM,
multiplied by the strategy selection variablesysl. The fourth set of constraints (4) states the
budget limitations. Finally, constraint sets (5) and (6) establish non-negativity and integrality.
This formulation is a nonlinear, non-convex, mixed-integer programming formulation.
Additionally, due to the stochastic traffic conditions and size of the network, it is difficult to solve
using exact analytical approaches. Hence, we develop an approach based on simulation
optimization. The next section explains the details of the solution framework.

3.2 Solution Framework

We employ a simulation-optimization approach to aid in the selection of congestion-mitigation
strategies to implement on a road network to improve (lessen) travel time for the roadway users.
This approach is especially useful in situations where the goal is to find a set, among many sets,
of model specifications (e.g. type of mitigation strategy orlocation of strategy implementation)
that leads to a desired (optimal or near-optimal) system performance. The methodological
framework consists of two components: a simulation component and an optimization component.
The components are complementary in that they exchange information during a solution
execution. The simulation model depicts a complex stochastic scenario, and the optimization
component provides trial solution sets for the simulation model to evaluate. Specifically, we use a
macroscopic traffic simulation model to represent a roadwaynetwork consisting of primarily
major thoroughfares in an urban area. Details of the simulation model are provided in Section 5.
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The optimization component consists of a tabu-search–based metaheuristic that generates trial
solutions for the simulation model to evaluate. Figure 1 depicts the overall framework of the
solution approach.

Tabu Search-Based
Optimization

Simulation
Model

N{XC}

Z(Xn) : Xn ∈ N

Figure 1: Simulation-optimization framework

Figure 1 shows that the simulation and optimization components work in concert by exchanging
“information” throughout the duration of procedure execution. The optimization component
generates trial solutions (N{XC}) that serve as inputs to the simulation model which represents
the roadway network. Each trial solution is comprised of selected links of the traffic network on
which to implement a type of congestion-mitigation strategy. Details of creating trial solutions are
given in Section 4. The simulation model evaluates each trial solution and reports a performance
measure (Z(Xn) : Xn ∈N ). In this research, the performance measure is the total vehicle hours on
the network over the duration of the simulation run. The optimization component uses previous
evaluations from the simulation runs to determine the next set of trial solutions for the simulation
to evaluate. This cycle of “information” exchange continues until an iteration limit or stopping
criterion is reached (see Section 4). The successively generated input trial solutions produce
varying evaluations, not necessarily all improving, but provide an efficient path to the best
solution in the long run. The result of the solution procedure is the determination of a
congestion-mitigation strategy that optimizes (or nearlyoptimizes) the traffic network
performance. In other words, a solution in the form of selected road segments from the roadway
network under study along with a recommended mitigation strategy for each segment is obtained
that minimizes the total vehicle hours on the network while still adhering to budgetary constraints.
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Section 4
Algorithmic Approach

For the optimization component, we develop two heuristic algorithms, local search and tabu
search, to search the solution space. For each of these approaches, we require a starting solution
to initialize the algorithms. In this effort, we use two construction heuristic methods to obtain an
initial solution. In this section, we discuss the construction heuristics used for initialization, then
we describe the details of the local-search and tabu-searchimplementations.

4.1 Construction Heuristics

Both local-search and tabu-search algorithms operate on a set of links selected for
mitigation-strategy implementation. To initiate each, weinvestigate the performance of two
construction heuristics based on greedy and random approaches, respectively. Details of the two
construction heuristics follow.

4.1.1Greedy Initialization

The greedy construction heuristic sorts all of the links on the network based on the level of
congestion, from the highest congested link to the lowest. From this sorted list, links with a
mitigation strategy implemented are added to the initial solution network until the budget limit is
reached. This initial solution is then evaluated by the simulation model. Subsequent trial solutions
are then generated via local search or tabu search.

4.1.2Random Initialization

The random construction heuristic chooses links at random among the highly congested links.
Each chosen link is then added to the initial solution until the budget limit is reached. Much like
the greedy initialization, the simulation model then evaluates the initial solution, and subsequent
trial solutions are generated via one of the search algorithms.

4.2 Search Algorithms

With an initial solution created via greedy or random initialization, the next step of the search
procedure, both in local search and tabu search, is choosingthe neighborhood of the solution for
the search. In both approaches, we evaluate three neighborhoods: Random Swap, One Swap, and
Two-Random Swap. In a Random Swap (RS) neighborhood, we select an add/drop link pair
among the congested links at random. More specifically, we select a link to add to the current
solution from the pool of congested links randomly and a linkto drop from the current solution
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randomly. In the RS approach, we examine neighborhood sizesfrom one to ten. Conversely, in a
One Swap (OS) neighborhood, we drop each link in the current solution one at a time and replace
it with another link from the pool of congested links randomly. Hence, the size of the OS
neighborhood is as large as the number of links in the currentsolution. That is, if there are seven
links in a current solution, then seven unique neighbor solutions are generated with each link in
the current solution being replaced by another congested link. The Two-Random Swap (TS)
neighborhood extends RS to consider two links simultaneously. In particular, TS selects two
add/drop link swaps at random and creates neighbor solutions equal to the number of links in the
current solution.

4.2.1Local Search

We develop a local-search procedure for each of the neighborhoods. A flowchart of the search
procedure is shown in Figure 2. Our local-search implementation begins with an initial solution

Initial Solution

Neighborhood 

SelectionSelection

Neighborhood 

S l ti C tiSolutions Creation

Improved 

Solution?

Reset Failure 

Counter

Update Initial 

Solution

Yes

Terminate
Failure 

i i ?

YesIncrement Failure 

No

Limit?Counter

No

Figure 2: Local-search flowchart

returned by the construction heuristic. In local search, a neighborhood solution becomes the next
current solution only if it improves upon the best solution thus far. In other words, the objective
function value must be better than the current best value. Please note that given a particular
solution, its objective value is returned by the simulationmodel. When comparing the objective
value of the neighbor solutions to the current network solution, if a better neighbor solution is not
found, then a failure counter is incremented and the neighbor solutions are re-selected. If the
failure counter reaches a predetermined failure limit without finding a better solution, the
local-search algorithm terminates. Otherwise, the failure counter is set to zero, and the current
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solution is updated with the newly found, better neighbor solution. Since our neighborhoods
depend heavily on the random selection of links, the failurecounter gives an opportunity to break
free from local minima. In our experiments, we set the failure counter to five consecutive
iterations without objective value improvement.

4.2.2Tabu Search

As before, we represent a solution to our problem with a set ofchosen congested links. Again, a
move in the neighborhood of the current solution corresponds to an RS, OS, or TS neighborhood
move. To prevent cycling and re-visiting prior solutions, tabu move restrictions are employed. In
our implementation, we classify a dropped link from a solution as tabu for a specified number of
solution procedure iterations, i.e. tabu tenure. The tabu tenure equals the number of links in the
solution.

The tabu-search algorithm uses a tabu listT, whereT = (T1, . . . ,TL) with eachTl representing the
tabu status of a tabu link. IfTl > 0 for some linkl ∈ L , then linkl is tabu and will remain tabu for
Tl iterations. Non-tabu links have a value of zero forTl . At each iteration, when a candidate
solution obtained results in dropping a linkl , Tl is assigned the tabu tenure and the other positive
entries in the tabu list are decreased by one. This is a type ofrecency-based or short-term memory
since the tabu list shows how recently the solutions are visited. In this study, even without
intermediate- and long-term memory components, we obtain high-quality solutions in our
experiments with tabu search, as we report in Section 6.

An aspiration criterion is used to overrule the tabu restrictions so we can avoid escapes from
attractive unvisited solutions. That is, even if a newly obtained solution at an iteration involves a
tabu link, it is accepted as a legitimate solution if it satisfies the aspiration criterion. In our study,
the aspiration criterion states that if a solution involving a tabu link has a better objective value
than the best-known solution, then the tabu status is disregarded. Otherwise, if the aspiration
criterion is not satisfied, we continue to the next iterationwith the best non-tabu solution. The
search terminates when a pre-set number of iterations is reached.

In Display 1, we describe the implementation of our tabu-search algorithm. The parameters used
in tabu search are the maximum number of iterations and the tabu tenure. In the beginning of the
algorithm, we initialize these parameters as well as the tabu list. Since no link is tabu in the
beginning, the tabu list consists of zeros. An initial solution, XI , is obtained using one of the
construction algorithms previously described. At each iteration, we search the neighborhood of
the initial solution (based on one of the three neighborhoodapproaches) and pick the best solution
in the neighborhood as the current solution,XC. To accept this solution as the best, we check the
tabu status of the link that was added to create it. There are two possible outcomes of this status
check. First, if the current solution,XC, does not contain a tabu link, we accept this solution as the
current solution. Then we check if this new solution is better than the overall best solution,XBest,
so far. If it is better, we update the overall best solution with XC. We also update the tabu list by
decreasing all the positive entries by one and setting the value for the newly dropped link to the
tabu tenure value. Second, if the current solution containsa tabu link, we check the aspiration
criterion. If the aspiration criterion is satisfied, we accept the solution as the overall best solution,
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XBest. The tabu list is also updated as before. When the aspirationcriterion is not satisfied, we
pick the best non-tabu solution from the neighborhood and accept it as the current solution.
Again, we update the tabu list. The procedure is continued inthis fashion until the preset total
number of iterations is performed.

Algorithm 1 Tabu-search algorithm
Input: XI , Z(XI)

Output: XBest, C(XBest)

1: XBest← XI ; C(XBest)←C(XI )
2: XC← XI ; C(XC)←C(XI)
3: maxIter← 300 ;tabuTenure← |XI |.
4: iterNo← 0.
5: while iterNo< maxIterdo
6: N ← neighborhood(XC).
7: X∗← argmin{Z(Xn) : Xn ∈N }.
8: Check tabu status ofX∗.
9: if T [tabu] = 0 then

10: XC← X∗ ; Z(XC)← Z(X∗)
11: if Z(XC)< Z(XBest) then
12: Z(XBest)← Z(XC); XBest← XC.
13: end if
14: Update tabu listT.
15: else
16: if Z(X∗)< Z(XBest) then
17: Z(XBest)← Z(X∗); XBest← XC.
18: Update tabu listT.
19: else
20: Let X∗∗ be the best non-tabu solution.
21: XC← X∗∗ ; Z(XC)← Z(X∗∗)
22: Update the tabu listT.
23: end if
24: end if
25: iterNo← iterNo + 1
26: end while
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Section 5
Simulation Model

The algorithms detailed in Section 4 communicate with a deterministic simulation model
representing a roadway network. The deterministic aspect of the model allows for a final model
value to be obtained and used in conjunction with the optimization. If the model were stochastic,
the possibility would exist to reject a potential improvement in infrastructure design. In this
research, the simulation model is constructed using TRANPLAN, a transportation-planning
simulation software package capable of generating macroscopic-level traffic models. The use of a
macroscopic model is appropriate, as the focus is to investigate congestion-mitigation strategies
and their effect on traffic flow on the entire network, not a specific roadway. The macroscopic
model examines the total daily flow of vehicles on all roadways simultaneously, which allows the
optimization model to analyze specific changes to roadway infrastructure. Thus, it is more
appropriate to use a macroscopic model than a microscopic model in this case. A microscopic
model would make evaluation and solution search difficult for the optimization component since a
microscopic model would return different values throughout the day. Essentially, a final value is
required for a typical day so that solutions can be compared.

TRANPLAN uses text-based input files to model the roadway structure and traffic flow on the
network. A TRANPLAN model can be described as information flowing between four modules.
Figure 3 shows the information exchange between the modules.

Module 1

Build Highway Network

Module 2

Gravity Model

Module 3

Macro Highway Network Update

Module 4

Equilibrium Highway Load

Figure 3: Simulation modules

Module 1 is invoked first in an execution. This module is responsible for constructing the
roadway network by translating a text-based data file. This network configuration file contains the
entire structure of all nodes and links (i.e. all roads). Additionally, each link in the network has a
classification code. This code characterizes the road type (e.g. interstate highway or divided
highway) of each link, the number of lanes of each road segment, and the vehicle capacity of each
road segment. This module also divides the study area into zones. The movement of vehicles
between these zones represents the flow of traffic on the network.

The volume of traffic flowing between any two zones is generated by module 2. In this module, a
text-based production/attraction file represents the vehicle volume flowing out of and into each
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zone. Of course, vehicle movement between zones occurs via the roadway network. If the vehicle
volume on a roadway link exceeds its capacity, that link is considered to be congested. This link
may then be targeted for capacity increase in the solution procedure.

Module 3 holds a link-capacity data file that contains an exhaustive list of the link classification
codes and their definitions. Thus, to change link capacitiesfrom one simulation-optimization
iteration to the next, the classification code of a link must be altered in the network configuration
file, which is then translated by the link-capacity data file.Specifically, the values in this file
define the vehicle capacity of each road segment in the network, against which vehicle volume is
measured to determine if congestion is present.

In module 4, the path for each vehicle from its origin to its destination is determined. The goal is
to minimize the sum of all vehicle travel times on a particular network configuration. This is
accomplished by establishing a network equilibrium that, in the context of transportation
assignments, occurs when no vehicle trip can be made by an alternate path without increasing the
total travel time of all vehicles in the network. More specifically, the model assigns a vehicle from
origin to destination using a shortest-path algorithm adjusted for congestion. The initial
assignment assigns all trips between origin and destination locations on the shortest roadway.
Then the volume assigned to the roadway is compared to the capacity of the facility, and a new
travel time is developed using a capacity restraint curve. Aportion of the assigned model volume
is then moved to an alternate path if the new travel time is greater than the original travel time.
This calculation of travel time for individual roadway links is performed, and the trips are
adjusted until the change of travel time between specific routes is equal. The output from module
4 (i.e. total vehicle hours on the network) is used by the optimizer to compare the effectiveness of
congestion-mitigation strategies.

During the first iteration of the simulation-optimization procedure, each module is invoked.
However, in subsequent iterations in which different congestion-mitigation strategies are being
evaluated by the simulation model, only modules 1, 3, and 4 are invoked. This is a result of only
the network configuration file being altered from one iteration to the next. The production and
attraction between network zones remains constant throughout the execution of the solution
procedure.
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Section 6
Experimentation

In this section, we test our solution methodology using an actual traffic scenario and data set from
Mobile, AL, an urban environment situated on the coast of theGulf of Mexico. This region makes
for an excellent testbed due to its expected growth over the next 25 years. Despite the recent
global economic downturn, this region is experiencing economic growth, especially in the areas
of manufacturing and freight movement, where the Port of Mobile is becoming a major access
point to the eastern United States for global firms. This economic upturn will create more jobs in
the area which, in turn, will increase the population in the region and the volume of private
vehicles on the roadway network. Along with the increased commercial traffic, traffic congestion
is certain to worsen over time. Figure 4 shows the current (2007) and predicted (2030) traffic
congestion locations on the Mobile roadway network.

(a) Mobile network (2007) (b) Mobile network (2030)

Figure 4: Mobile, AL roadway congestion

The darkened areas on the traffic network links represent points of congestion. A thicker link
indicates greater congestion. By examination of Figure 4, it is evident that a considerable increase
in congestion is forecast for the roadways by 2030. Thus, we investigate the performance of our
solution approach on the 2030 network in terms of solution quality (i.e. percent decrease in
congestion) and computational run time.
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To simplify the presentation of the experimentation, a run code was designed to describe for each
outcome the solution initialization method, the type of search algorithm used, the method of link
exchange in a solution vector, and the neighborhood size of asolution. In the run code, the first
character is a “G” or “R” to denote if the initial solution wasgenerated using a greedy or random
technique. The second character is a “T” or “L” to designate if tabu search or local search was the
solution strategy. The third and fourth characters are “RS”, “OS”, or “TS” to specify whether
Random Swap, One Swap, or Two-Random Swap was used as the neighborhood-search strategy.
Run codes with a fifth, sixth, and possibly seventh characterrepresent the number of neighbor
solutions in each iteration (e.g. 5N represents a neighborhood size of 5). To illustrate, a run code
of GTRS5N translates to a solution run using a greedy technique for initialization, tabu search as
the solution strategy, random swap for the neighborhood search, and a neighborhood size of 5. In
the local-search implementation, we set the failure limit to five iterations. Finally, the termination
criterion for the simulation-optimization procedure is a maximum of 300 iterations.

6.1 Traffic-Congestion Savings

In this section, we present the results of our algorithmic approaches in terms of the percent
decrease in traffic congestion that would be realized with the implementation of the mitigation
strategy suggested by each experimental run. After consultation with the director of the Mobile
Metropolitan Planning Organization, we concentrated on the mitigation strategy of adding lanes
as a means to increase capacity of roadways. Although there are other mitigation strategies
available, such as the addition of high-occupancy vehicle lanes and reversible lanes, their
representation as a mitigation strategy would also take theform of a roadway-capacity increase.
In terms of cost, the addition of a lane (in each direction) is$5,000,000 per mile. Table 1 shows
the top 20 solutions in terms of congestion savings.

This experimentation is based on the 2030 network congestion shown in Figure 4, where the
predicted congestion level translates to 357,836 total vehicle hours and the non-congested level to
307,461 total vehicle hours. The values reported in Table 1 represent the savings that would be
realized in 2030 if the strategy suggested by an experimental run (subject to a budgetary
constraint of $25 million) were implemented. From Table 1, the maximum savings of total
vehicle hours is 4.26% (i.e. 355,691 total vehicle hours).

The congestion savings are calculated with respect to the amount of congestion expected to be
present on the network in 2030, which is the difference in total vehicle hours between the
congested network and non-congested network. To explicitly calculate, the amount of expected
congestion is 50,375 vehicle hours(357,836−307,461). Thus, a 4.26% congestion savings is
calculated as(357,836−355,691)/50,375. The total vehicle hours on the non-congested
network (i.e. 307,461) is the lower bound on the network, as it is not possible to completely
eliminate vehicle hours on the network. Thus, this value should be used in any congestion-savings
calculation.

From a methodological viewpoint, the tabu-search strategyperforms much better than the
local-search strategy with 18 of the top 20 solutions based on tabu search. This is not unexpected;
tabu search should generally find better solutions because it has a mechanism to avoid becoming
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Table 1: Traffic-congestion savings and computational runtime performance
Run Code Total Vehicle Hours Congestion Savings Run Time (sec)
GTRS9N 355,691 4.26% 5,483
GTRS10N 355,733 4.17% 6,541
RTRS6N 355,779 4.08% 5,488

RTOS 355,818 4.01% 8,872
GTRS7N 355,824 3.99% 4,103
RTRS8N 355,848 3.95% 6,812

GTTS 355,880 3.88% 6,630
GTRS6N 355,892 3.86% 3,651
RTRS10N 355,912 3.82% 7,488
GTRS8N 355,971 3.70% 5,137

GTOS 355,971 3.70% 11,540
RTRS9N 356,052 3.54% 6,979
RTRS5N 356,064 3.52% 3,798

RLRS10N 356,072 3.50% 439
GTRS5N 356,078 3.49% 3,086
RTRS4N 356,192 3.26% 2,266
GTRS4N 356,234 3.18% 2,444
RLRS9N 356,288 3.07% 861
GTRS3N 356,290 3.07% 1,714

RTTS 356,291 3.07% 5,662
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trapped in local optima. Thus, the tabu-search strategy likely explores more of the solution space
and finds better overall solutions. It is also of note that thebetter solutions tend to have larger
neighborhood sizes. This is not surprising since a larger neighborhood size also allows for greater
exploration of the solution space during each iteration of the solution procedure.

6.2 Methodological Comparison

In this section, we investigate the performance of our algorithmic approaches in terms of
computational run time and selection of search parameters.

Table 1 shows the computational run times for the top 20 solutions in terms of congestion savings,
but no obvious trends appear. Figure 5 displays the data in a scatterplot for re-examination. From
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Figure 5: Congestion savings vs. run time scatterplot

the scatterplot, a general upward trend is noticeable. In other words, congestion savings increase
as run times increase. This outcome makes sense, as heuristic search procedures tend to find
better solutions the longer they run. The minimum run time is439 seconds while the maximum
run time is 11,540 seconds. The solution with the greatest congestion savings (i.e. 4.26%) has a
run time of 5,483 seconds, but even the solution with the lowest run time shows significant
congestion savings of 3.50%. This demonstrates the abilityof this solution approach to generate
quality solutions in a short time. This characteristic may be of great importance if the evaluation
of mitigation strategies is time sensitive, such as during adisaster event. The solution approach
would also be of tremendous benefit in the long-term planningof transportation networks.
Typically, analysis of alternatives in transportation planning takes several months to perform.
However, with a decision support tool based on simulation optimization, evaluation time can be
greatly reduced even when considering the worst case resultfrom Table 1 (i.e. 11,540 seconds, or
about 3.20 hours).
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Table 2 shows the effect of neighborhood size on solution search strategy (i.e. tabu search and
local search) in terms of solution quality (total vehicle hours) and computational run time (in
seconds).

Table 2: Neighborhood-size comparison
Tabu Search Local Search

Greedy Initial Random Initial Greedy Initial Random Initial
|N | TVH Run Time TVH Run Time TVH Run Time TVH Run Time

1 356,852 539 356,883 514 357,558 53 357,567 49
2 356,709 1,125 356,412 1,228 357,145 171 357,410 138
3 356,290 1,714 356,561 1,605 356,607 198 357,202 191
4 356,234 2,444 356,192 2,266 357,003 198 356,903 253
5 356,078 3,086 356,064 3,798 356,345 539 356,790 261
6 355,892 3,651 355,779 5,488 356,881 271 356,702 342
7 355,824 4,103 356,314 4,118 356,374 507 357,204 203
8 355,971 5,137 355,848 6,812 356,366 640 356,574 507
9 355,691 5,483 356,052 6,979 356,674 382 356,288 861

10 355,733 6,541 355,912 7,488 356,976 555 356,072 439

Examining Table 2, run times increase, in general, as the neighborhood size (|N |) increases. This
is expected because an increase in|N |means more solutions are being evaluated by the
simulation model during each iteration of the solution procedure. Furthermore, for each value of
|N |, the best network time (i.e. lowest total vehicle hours) is found using a strategy based on tabu
search. This result is likely due to the diversity of trial solutions sent to the simulation model by
the tabu-search algorithm, as opposed to the focused searchemployed by the local-search–based
strategy. Lastly, for each value of|N |, local search provides solutions in shorter times than tabu
search. This outcome is likely due to the local-search procedure terminating as a result of
becoming stalled at a local minimum and not providing improving solutions for several
consecutive iterations (i.e. non-improving iteration limit exceeded). However, in some test
instances, local search does provide a quality solution with a much shorter run time when
compared to tabu search.
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Section 7
Conclusions and Future Work

In this paper, we develop a simulation-optimization approach for a decision support tool to help
determine the best strategies to mitigate the congestion ofroadway networks. The optimization
approach utilizes both tabu-search and local-search techniques to work in concert with a
traffic-simulation model to explore the solution space. This approach is useful in determining the
best set of roadway segments in which to implement mitigation strategies while adhering to
budgetary constraints. This is especially useful for urbanand regional transportation planners
who have a large number of alternatives to consider. Combining the benefits of optimization and
simulation, the overall solution approach provides an increased ability to investigate a large
number of mitigation alternatives in a short period of time (on the order of hours) as opposed to
typical alternative evaluations that take months to complete.

As a future research direction, we look to expand on the number of mitigation strategies available
as well as investigate the possibility of regional transit systems to aid in the mitigation of traffic
congestion. Furthermore, we plan to extend this work into the area of emergency and disaster
response. During events where response time is critical, this methodology would serve as a way
to examine response strategies in terms of maximizing the benefit to those affected by the
disruptive event.
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