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Executive Summary

Traffic congestion has grown considerably in the United States over the past twenty years. In this
paper, we develop a robust decision support tool based on simulation optimization to evaluate
and recommend congestion-mitigation strategies to transportation-system decision-makers. A
tabu-search—based optimizer determines different network design strategies on the road network
while a traffic simulator evaluates goodness of fit. The tool is tested with real traffic data.



Section 1
Introduction

Traffic congestion has grown considerably in the UnitedeStathe hours of delay per traveler is
more than five times greater than it was 20 years ago. In 2885dtion’s drivers experienced a
total of 4.2 billion hours (about 38 hours per driver) in fi@tlelays. Along with fuel waste, this
translates to a cost of about $78.2 billion. Recent growtm@mufacturing in the southern United
States, especially in the automotive industry, has ine@agight movement with regard to raw
materials, in-process parts, and finished goods. Altholighrdicates economic growth for the
southern states, it causes high utilization of state aner&dhighways and potential congestion in
the region’s urban areas.

The investigation of transportation networks is typicallydied using a network design or
stand-alone simulation. A network design is useful for tifgimg problem areas on a network
and suggesting improvements, but it fails to capture thehststic, dynamic nature of the traffic
flow, thereby giving a false sense of the congestion. Stéwrkasimulation provides a better
representation of the traffic flow by guessing the resourttengs and strategies that would allow
the system to perform at its best. This is difficult due to @rgé number of possible
combinations of mitigation strategies and problem paransetis well as constraints on budgets,
personnel, and other resources. To remedy the issues ef¢besmon solution approaches, we
employ a simulation-optimization approach that efficigisgarches for the best combination
using smart search techniques.

In this report, we aim to assist transportation-systemghess and decision-makers in dealing
with the root causes of urban traffic congestion (e.g. céyphoitlenecks, traffic incidents, work
zones) by developing a decision support tool based on stionlaptimization that evaluates,
analyzes, and recommends mitigation strategies to lekserohgestion. To investigate and
evaluate potential mitigation strategies, we examinenherporation of an optimization
technique, in the form of a tabu-search meta-heuristid) wit existing traffic-simulation model
created using TRANPLAN traffic simulation software. TRAN&NM is an integrated suite of
programs for forecasting the impacts of alternative lasd-scenarios or transportation networks
on highway and public-transit systems (The Urban Analysmu@, 1998).

In this problem, our goal, given a congested traffic netwiskp minimize the total time traveled
on the network by determining the optimal set of congestidigation strategies to implement.
Typical mitigation strategies include, but are not limitedadditional capacity, reversible lanes,
dedicated lanes, variable toll schedule, and new roadsirniplementation of these types of
strategies are restricted by operational constraints aschanning capacity and budget
limitations. In our investigation, we concentrate on aiddial capacity strategies while adhering
to budgetary constraints.

This research effort explores new areas of study with régpeuitigating traffic congestion in an
urban environment. The task of determining the types ofgaiion strategies to employ and the
location of their implementation typically falls on regarplanning commissions (RPCs) or
metropolitan planning organizations (MPOSs). This is alg@majing and cost-prohibitive task given



the large number of possible strategy combinations andpatéocations. Thus, the purpose of
this research is to develop a decision support tool to aispartation planners in determining the
best options without the need for exhaustive alanlysistefiaatives. The decision support tool
helps identify the congestion points and potential mitwastrategies to alleviate congestion as
well as evaluate the impact of the strategy alternativesenraffic network. Furthermore, a
sensitivity analysis may be performed regarding the rotesst of the suggested solution due to
different resource levels, traffic scenarios, and freiglotrement expectations.

The remainder of the paper is organized as follows. In thé sestion, we briefly review the
traffic-mitigation and simulation-optimization literagiand summarize the work related to the
problem under consideration. In Section 3, we discuss thergéframework of our
simulation-optimization approach. Next, we explain thtads of the metaheuristic-optimization
and simulation components in Sections 4 and 5. In Sectiore@egcribe a scenario based on a
real traffic network, demonstrate the performance of theikition-optimization methodology,
and illustrate the potential of the solution approach. lynen Section 7, we summarize our
findings and conclude the paper by discussing the potentj@adt of this work.



Section 2
Literature Review

Metropolitan areas worldwide are experiencing an incr@agaffic congestion. In many cases,
the congestion-mitigation alternatives of constructieg/moutes and increasing roadway capacity
have become limiting and often cost prohibitive. Therefaneans to improve the planning and
operational aspects of transportation networks to maxdrthie utility of the existing

transportation network are the focus of transportatioeaesh and current practices. Our problem
borrows from and contributes to three main areas of reseasttvork design,
congestion-mitigation simulation modeling, and simuatoptimization. We review work from
these areas most related to our paper.

2.1 Network Design/Redesign

The network design problem (NDP) has long been recognizedasf the most difficult and
challenging in transportation. It involves choosing thetlieom a set of projects and making
decisions that optimize an objective (e.g., minimizingtdtavel time) while keeping resource
consumption (e.g. budget) within its limits. This probleswifficult to solve because of its
combinatorial nature and non-convexity of the objectivection (Yang and Bell, 1998).
Historically, this problem has been posed in three formgserdte form dealing with the addition
of new links to an existing road network, a continuous forralohg with the optimal capacity
expansion of existing links, and the mixed NDP in which thearcement and addition of road
segments to an existing transport network is treated jomther than separately. For rural
environments, or networks, that have the capability to geahe capacity of their edges,
researchers shift their focus to, but do not always sold{yar, capacity expansion. Regardless
of form, the objective is to optimize a given system-perfante measure (e.g. reducing
congestion time or minimizing total cost of transportajiauile accounting for the route choices
of the network users and system constraints such as budgjetlaer resource limitations.

Over the last few decades, significant attention has beemgovthe transportation-network
design problem and to reducing traffic congestion and treasts. There are several approaches
to solve the NDP. Steenbrink (1974), Wong (1984), and Matjiaaa \Wong (1984) survey earlier
algorithms for solving this problem. Yang and Bell (19983g&nt a recent endeavor in the review
of NDP models and algorithms. One of the earlier exact ogttion approaches—a
branch-and-bound algorithm—is presented by LeBlanc (L9vi&rchant and Nemhauser (1978)
modeled a directed network where traffic flows move towardhglsidestination as a linear
programming formulation and solved it using decomposiéilgorithms. Other
exact-optimization solutions for the NDP involve branctdaut algorithms (Gunluk, 1999),
cutting-plane algorithms (Pesenti, et al., 2004), stoiwbasogramming models (Riis and
Andersen, 2002; Riis and Lodahl, 2002), joint optimizatioltowing Wardrop’s principles

(Chiou, 2005), and using different types of modeling progggdAthanasenas, 1997; Maze and
Kamayab, 1998; Ukkusuri and Waller, 2008). However, theigren of the optimization
algorithms in solving the problem makes the solutions caaanally expensive when the



solution space exceeds even twenty alternatives, whickeislya small number. Heuristic
approaches provide a remedy, as they encompass a wide ragltgrmatives to search. Among
the heuristic approaches, simulated annealing (Lee ang, ¥&94), ant-colony-based
metaheuristic (Poorzahedy and Abulghasemi, 2005), gealkgtorithm (Yin, 2000), and particle
swarm optimization (Zhang and Gao, 2007) have been suciyssiplemented to solve larger
instances of the NDP. With this motivation, our work focusasapacity expansion of existing
roads with a subset of selected strategies using locatts@ad tabu-search heuristics for the link
selection. Both local and tabu-search heuristics have bgea in the literature to solve
combinatorial optimization problems. In addition to thealution quality, their ease of
implementation makes them favorable choices.

2.2 Traffic Simulations

As transportation systems have become more complex anebisiagly congested, simulation
modeling has gained recognition as an effective approactuantifying traffic operations.
Simulation models are designed to model any combinationid@se street and freeway facilities,
including most signal control and other operational sgig® Thus, to cope with complex
transportation-planning tasks, traffic engineers aresggingly using traffic simulation as a
means for evaluating the effectiveness of new road designs.

Traffic-simulation models are often separated into thrassgs according to level of detail
(Erlemann and Hartmann, 2005): macroscopic, mesoscaplaygcroscopic. Macroscopic
models are most common where traffic flow is emulated as astoéparticles subject to the

laws of fluid dynamics (Daganzo, 1995; Helbing, et al., 200&sialos and Papageorgiou, 2004;
Papageorgiou, 1990). On the other extreme, microscopi@mdacus on individual vehicles and
driving behavior. Macroscopic models typically simuledegle road networks, and as a result use
fewer computational resources. However, macroscopic tmageally provide less detail
compared to microscopic models. In this research, we dangito the work involving
macroscopic simulation models by utilizing a model of tlyise and taking advantage of the
speed and high-level representation in the model.

Microscopic traffic simulation is a modeling approach andlgiical tool increasingly used to
support planning and operational decisions. A number ofesopic models have been
developed for motorway networks, urban networks, and meceddors (van Aerde, et al., 1997;
Yang and Koutsopoulos, 1996). Microscopic models provibletter representation of time
dynamics, congestion build-up, and the interrelation leetwoperations and impacts. For
instance, in urban networks with little or no room for roagamsion, researchers turn their focus
to changing the timing of light signals (Cantarella, et2006; Chiou, 2007; Wen, 2008), lane
changing and merging (Hidas, 2002), or the constructiontefsections (Doniec, et al., 2006).
While solving for changes in signal timings, Wen (2008) camel the use of a simulation model
with a basic algorithm that determined how long the light ldaemain a certain color and when
that countdown would start. Chiou (2007) addressed theaguiraf reserved capacities in
signal-controlled networks. Cantarella, et al. (2006atzd a solution that considered both the
coordination of the signal settings on adjacent intersastand the influence of the new system



on the path choice of drivers. Hidas (2002), on the other hfedised on lane-changing and
merging algorithms within a massive multi-agent simulasgstem in which driver-vehicle
objects were modeled as autonomous agents. For low levetswgestion, changing the timing of
traffic lights on a network is a reasonable approach to cdiggesnitigation. However, it is not a
reasonable approach for large networks since buildinggg{acale microscopic simulation model
is costly and demanding in terms of data inputs, calibragiorts, and computational resources
(Balakrishna, et al., 2007).

Mesoscopic models, in contrast, bridge the gap betweenasempic and microscopic simulation
by using individual vehicles actuated through macroscopitrol variables. Mesoscopic models
(Chiu, 2009; Yang, 1997) consider packets of vehicles withlar characteristics (e.g. same
origin and destination) as autonomous entities and mowe theide the network according to
macroscopic traffic-flow dynamics and specific route chogtégons. The intent of this type of
modeling is to take advantage of the strengths associatbdwicroscopic and macroscopic
modeling. However, for this research, a macroscopic agbr@astill most appropriate since we
are dealing with mitigation strategies at a lower fidelityde

2.3 Simulation Optimization

As we discussed in the previous section, even though siianlatodels are capable of capturing
complex system behaviors of transportation traffic netwg@Helbing, et al., 2002; Herty and
Klar, 2003; Hidas, 2002; Owen, et al., 2000), they may reglaits of development and time to
run, which typically makes them inadequate for solving mjation problems. Proposed
operational improvements for these networks are difficuéivaluate or to simulate accurately
because of the increased effect of vehicle interactionsrapect of design elements on traffic
flow, which occur under congestion. This situation is reraddiy the simulation-optimization
approach in that it efficiently searches for the best contlwnaf problem parameters using
smart search techniques.

A more formal definition of simulation optimization is proadd by Law and McComas (2000) as
“the orchestration of the simulation of a sequence of systenfigurations so that a system
configuration eventually is obtained that provides an ogltion near optimal solution.” The main
optimization approaches utilized in simulation optimiaatinclude random search (Andradottir,
2005); response surface methodology (Barton, 2005); gnadiased procedures (Fu, 2005);
ranking and selection (Kim and Nelson, 2005); sample patimapation (Rubinstein and
Shapiro, 1993); and metaheuristi€@lgffson, 2005), including tabu search, genetic algorghm
and scatter search. Until a few years ago, the research aresiom optimization had focused on
theoretical developments (Fu, 2002). As Fu (2002) pointedtbere is a need for algorithms that
take advantage of the theoretical results of the literatutere still flexible and applicable to real
problems. Within the transportation literature, to thetlmé®ur knowledge, there is no other
research paper that takes advantage of the benefits of théasion optimization for
traffic-congestion mitigation. Our paper contributes e thap by developing a
tabu-search—based simulation-optimization approach foad-network improvement problem.



Section 3
General Model and Solution Framework

3.1 General Model

The overall goal of this research is to minimize overall &aime on the road network by
reducing congestion via determination of appropriate estign-mitigation strategies. For this
purpose, we first present a formulation of our problem, wischgeneralization of the
single-destination dynamic traffic assignment problens@néed by Merchant and Nemhauser
(1978). We represent the traffic network by a directed gr@ph (A, L), where

N ={1,...,i,...,N}isthe set of nodes and = {1,...,1,...,L} is the set of links. To alleviate
congestion, we consider a number of mitigation strategi@nplement on this network, which is
represented as = {1,...,s,...,S}. In the case of unlimited resources, one would implement the
best congestion-alleviation strategy on every congest&dHowever, in reality,
constraints—such as physical, budgetary, and envirorahemxist that restrict unlimited
strategy implementation. In this paper, we explicitly adies budget constraints where the
implemented strategies cannot exceed a certain pre-sgehid To formulate the problem, we
define the following additional notation:

Parameters

T set of time intervals during the simulation run times 1,...,T.

I(i)  the set of incoming links of nodes 4.

O(i) the set of outgoing links of node= A(.

Pi number of vehicles entering at nodat time intervak, i € Al andt € 7.
bg| budget requirement of strategpn link |, se S andl € L.

Wgi(.) exitlink function of linkl, | € L.

Decision Variables

Xsit nhumber of vehicles on linkat time interval using strategg, s€ $,| € £, andt € 7.
Usit humber of incoming vehicles to linkat time interval under strategg, s€ S,

l € £,andt € 7.
ysi 1, if strategysis implemented on link, s€ § andl € L.

Formulation

Min > > D Gitlsit) (NDP)
seSlesteT



subject to

Xsit — Xsl t—1 = Usit — Wsl(Xsit—1), Vle LVt €T, andvVse S. 1)
Ugt — Z Z Wei (Xs1 t—1) = Pit, Vie N,Vt € T, andvse §. (2)
SESIET() SES1€0(i)

Z Xsit < Mysgl, vVl € £, andVse S. (3)

teT
Z bsiys < B. 4)

seSleL

Xsit > 0 andug; > 0, VIl € LVt € T, andVse §. (5)
ys1 € {0,1}, vVl € L andVse §S. (6)

In this formulation Gyt (Xst) represents the total vehicle hours due to all traffic flow @n th
network.Cgy¢(.) is a function that represents the total vehicle hours dugategys on link |

during time intervat. This cost function takes the decision variaklg, the number of vehicles,
as an input. Since there is no closed-form expression feiftimiction, we use simulation for the
evaluation of a particular strategyn link | during time intervat. The objective function dNDP
aims to minimize the total vehicle hours and the total cotigesn the network simultaneously.
The first set of constraints (1) are state equations exmig#sé conservation of vehicles on a link
[, € L. The second set of constraints (2) are flow-balance equsatibevery node i € Al of the
network. The third set of constraints (3) establishes traiomship between the continuous-flow
variables and the binary strategy-selection variablesstablish this relationship, we use a big
M-type formulation. Hence, the right-hand side of constragt (3) is a large constant, big,
multiplied by the strategy selection variabigs The fourth set of constraints (4) states the
budget limitations. Finally, constraint sets (5) and (Gabksh non-negativity and integrality.
This formulation is a nonlinear, non-convex, mixed-integegramming formulation.
Additionally, due to the stochastic traffic conditions amesof the network, it is difficult to solve
using exact analytical approaches. Hence, we develop anagpbased on simulation
optimization. The next section explains the details of tiatson framework.

3.2 Solution Framework

We employ a simulation-optimization approach to aid in thkestion of congestion-mitigation
strategies to implement on a road network to improve (lessavel time for the roadway users.
This approach is especially useful in situations where thed I to find a set, among many sets,
of model specifications (e.g. type of mitigation strategjogation of strategy implementation)
that leads to a desired (optimal or near-optimal) systerfopaance. The methodological
framework consists of two components: a simulation compbaed an optimization component.
The components are complementary in that they exchangematmn during a solution
execution. The simulation model depicts a complex stoahasénario, and the optimization
component provides trial solution sets for the simulatiamdel to evaluate. Specifically, we use a
macroscopic traffic simulation model to represent a roadwework consisting of primarily
major thoroughfares in an urban area. Details of the sinamhodel are provided in Section 5.



The optimization component consists of a tabu-search-dbas¢aheuristic that generates trial
solutions for the simulation model to evaluate. Figure licdspghe overall framework of the
solution approach.

N{X“}

\

Tabu Search-Based Simulation
Optimization Model

Z(X"): X" e N
Figure 1: Simulation-optimization framework

Figure 1 shows that the simulation and optimization comptwork in concert by exchanging
“information” throughout the duration of procedure exeont The optimization component
generates trial solutiondl{ X©}) that serve as inputs to the simulation model which reptssen
the roadway network. Each trial solution is comprised oésild links of the traffic network on
which to implement a type of congestion-mitigation strgtddetails of creating trial solutions are
given in Section 4. The simulation model evaluates eachsmiation and reports a performance
measureZ(X") : X" € A). In this research, the performance measure is the totalediours on
the network over the duration of the simulation run. Thermjation component uses previous
evaluations from the simulation runs to determine the nexbstrial solutions for the simulation
to evaluate. This cycle of “information” exchange contiawetil an iteration limit or stopping
criterion is reached (see Section 4). The successivelyrgtkinput trial solutions produce
varying evaluations, not necessarily all improving, budyide an efficient path to the best
solution in the long run. The result of the solution procedisrthe determination of a
congestion-mitigation strategy that optimizes (or neagtimizes) the traffic network
performance. In other words, a solution in the form of selécbad segments from the roadway
network under study along with a recommended mitigaticatstyy for each segment is obtained
that minimizes the total vehicle hours on the network whilkadhering to budgetary constraints.



Section 4
Algorithmic Approach

For the optimization component, we develop two heurisgoathms, local search and tabu
search, to search the solution space. For each of theseaghps) we require a starting solution
to initialize the algorithms. In this effort, we use two ctmistion heuristic methods to obtain an
initial solution. In this section, we discuss the constiurtheuristics used for initialization, then
we describe the details of the local-search and tabu-s@apmlbmentations.

4.1 Construction Heuristics

Both local-search and tabu-search algorithms operate ehat bnks selected for
mitigation-strategy implementation. To initiate each,imeestigate the performance of two
construction heuristics based on greedy and random apgmsaespectively. Details of the two
construction heuristics follow.

4.1.1Greedy Initialization

The greedy construction heuristic sorts all of the linkslmanetwork based on the level of
congestion, from the highest congested link to the lowestmihis sorted list, links with a
mitigation strategy implemented are added to the initidtson network until the budget limit is
reached. This initial solution is then evaluated by the $ation model. Subsequent trial solutions
are then generated via local search or tabu search.

4.1.2Random I nitialization

The random construction heuristic chooses links at randoong the highly congested links.
Each chosen link is then added to the initial solution uht budget limit is reached. Much like
the greedy initialization, the simulation model then eaddis the initial solution, and subsequent
trial solutions are generated via one of the search algosth

4.2 Search Algorithms

With an initial solution created via greedy or random inigation, the next step of the search
procedure, both in local search and tabu search, is chotstmgeighborhood of the solution for
the search. In both approaches, we evaluate three neightmshRandom Swap, One Swap, and
Two-Random Swap. In a Random Swap (RS) neighborhood, wetseledd/drop link pair
among the congested links at random. More specifically, lezsa link to add to the current
solution from the pool of congested links randomly and a tmkrop from the current solution



randomly. In the RS approach, we examine neighborhood Bizesone to ten. Conversely, in a
One Swap (OS) neighborhood, we drop each link in the curatien one at a time and replace
it with another link from the pool of congested links randgnHience, the size of the OS
neighborhood is as large as the number of links in the cus@ntion. That is, if there are seven
links in a current solution, then seven unique neighbortsmig are generated with each link in
the current solution being replaced by another congest&dTihe Two-Random Swap (TS)
neighborhood extends RS to consider two links simultanigolmsparticular, TS selects two
add/drop link swaps at random and creates neighbor sotugiqual to the number of links in the
current solution.

4.2.1Local Search

We develop a local-search procedure for each of the neigjolads. A flowchart of the search
procedure is shown in Figure 2. Our local-search implenemt#egins with an initial solution

Initial Solution

|

Neighborhood

Selection
T

v

Neighborhood
Solutions Creation

Improved Reset Failure Update Initial
Solution? Counter Solution
Increment Failure Yes

Terminate

Counter

No

Figure 2: Local-search flowchart

returned by the construction heuristic. In local searchgighborhood solution becomes the next
current solution only if it improves upon the best solutibog far. In other words, the objective
function value must be better than the current best valieadel note that given a particular
solution, its objective value is returned by the simulatimodel. When comparing the objective
value of the neighbor solutions to the current network sotytf a better neighbor solution is not
found, then a failure counter is incremented and the neigbdlations are re-selected. If the
failure counter reaches a predetermined failure limit withfinding a better solution, the
local-search algorithm terminates. Otherwise, the failtounter is set to zero, and the current
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solution is updated with the newly found, better neighbdutson. Since our neighborhoods
depend heavily on the random selection of links, the faitmmenter gives an opportunity to break
free from local minima. In our experiments, we set the faloounter to five consecutive
iterations without objective value improvement.

4.2 .2Tabu Search

As before, we represent a solution to our problem with a sehofen congested links. Again, a
move in the neighborhood of the current solution correspdacn RS, OS, or TS neighborhood
move. To prevent cycling and re-visiting prior solutioreytt move restrictions are employed. In
our implementation, we classify a dropped link from a salntas tabu for a specified number of
solution procedure iterations, i.e. tabu tenure. The tabure equals the number of links in the
solution.

The tabu-search algorithm uses a tabuTistvhereT = (Ty, ..., T.) with eachT representing the
tabu status of a tabu link. T > 0 for some linkl € £, then linkl is tabu and will remain tabu for
T, iterations. Non-tabu links have a value of zeroTarAt each iteration, when a candidate
solution obtained results in dropping a lihKT, is assigned the tabu tenure and the other positive
entries in the tabu list are decreased by one. This is a typecehcy-based or short-term memory
since the tabu list shows how recently the solutions argedsin this study, even without
intermediate- and long-term memory components, we obigim-tuality solutions in our
experiments with tabu search, as we report in Section 6.

An aspiration criterion is used to overrule the tabu restiics so we can avoid escapes from
attractive unvisited solutions. That is, even if a newlyadid solution at an iteration involves a
tabu link, it is accepted as a legitimate solution if it S&isthe aspiration criterion. In our study,
the aspiration criterion states that if a solution invotyantabu link has a better objective value
than the best-known solution, then the tabu status is disdegl. Otherwise, if the aspiration
criterion is not satisfied, we continue to the next iteratioth the best non-tabu solution. The
search terminates when a pre-set number of iterationsébeea

In Display 1, we describe the implementation of our tabuealgorithm. The parameters used
in tabu search are the maximum number of iterations and theténure. In the beginning of the
algorithm, we initialize these parameters as well as the ligsb Since no link is tabu in the
beginning, the tabu list consists of zeros. An initial siwngX', is obtained using one of the
construction algorithms previously described. At eactatien, we search the neighborhood of
the initial solution (based on one of the three neighborheqmutoaches) and pick the best solution
in the neighborhood as the current soluti¥fy, To accept this solution as the best, we check the
tabu status of the link that was added to create it. Therenar@bssible outcomes of this status
check. First, if the current solutioXC, does not contain a tabu link, we accept this solution as the
current solution. Then we check if this new solution is betitan the overall best solutioX et

so far. If it is better, we update the overall best solutiotha(C. We also update the tabu list by
decreasing all the positive entries by one and setting thee\far the newly dropped link to the
tabu tenure value. Second, if the current solution contaitadbu link, we check the aspiration
criterion. If the aspiration criterion is satisfied, we gaicéhe solution as the overall best solution,
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XBest The tabu list is also updated as before. When the aspiretitation is not satisfied, we
pick the best non-tabu solution from the neighborhood aké@at as the current solution.
Again, we update the tabu list. The procedure is continugdignfashion until the preset total
number of iterations is performed.

Algorithm 1 Tabu-search algorithm

Input: X', Z(X")
Output: XBest C(xBest
1: XBest X! c(xBest) . c(X!)

2: XC X', C(XC) «c(x"
3: maxiter— 300 ;tabuTenure— |X!'|.
4: iterNo+ 0.
5: while iterNo < maxlterdo
6: A < neighborhoodX®).
7. X*<«—argmin{Z(X") : X" € A(}.
8: Check tabu status of*.
9: if T [tabd = Othen
10: XC - X* 5 Z(XC) - Z(X¥)
11: if Z(X©) < Z(XBe then
12: Z(XBesY « Z(XC); xBest xC,
13: end if
14: Update tabu lisT .
15: else
16: if Z(X*) < Z(XBe) then
17: Z(XBesh « 7(X*); XBeste XC,
18: Update tabu list .
19: else
20: Let X** be the best non-tabu solution.
21: XC e X Z(XC) + Z(X*)
22: Update the tabu list.
23: end if
24: endif
25. iterNo« iterNo+ 1
26: end while
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Section 5
Simulation Model

The algorithms detailed in Section 4 communicate with ardatastic simulation model
representing a roadway network. The deterministic asgdebeanodel allows for a final model
value to be obtained and used in conjunction with the opttion. If the model were stochastic,
the possibility would exist to reject a potential improverm infrastructure design. In this
research, the simulation model is constructed using TRAANPLa transportation-planning
simulation software package capable of generating magpasdevel traffic models. The use of a
macroscopic model is appropriate, as the focus is to inyatgticongestion-mitigation strategies
and their effect on traffic flow on the entire network, not acsfieroadway. The macroscopic
model examines the total daily flow of vehicles on all roadsveiynultaneously, which allows the
optimization model to analyze specific changes to roadwigstructure. Thus, it is more
appropriate to use a macroscopic model than a microscopiehmothis case. A microscopic
model would make evaluation and solution search difficultiie optimization component since a
microscopic model would return different values througttbe day. Essentially, a final value is
required for a typical day so that solutions can be compared.

TRANPLAN uses text-based input files to model the roadwaycstire and traffic flow on the
network. A TRANPLAN model can be described as informatiowitay between four modules.
Figure 3 shows the information exchange between the madules

Module 1

Build Highway Network
Module 3

Macro Highway Network Update

v

Module 4
Equilibrium Highway Load
Module 2

Gravity Model

Figure 3: Simulation modules

Module 1 is invoked first in an execution. This module is respble for constructing the
roadway network by translating a text-based data file. Téiwark configuration file contains the
entire structure of all nodes and links (i.e. all roads). iliddally, each link in the network has a
classification code. This code characterizes the road g/geifterstate highway or divided
highway) of each link, the number of lanes of each road segjraad the vehicle capacity of each
road segment. This module also divides the study area imeszdrhe movement of vehicles
between these zones represents the flow of traffic on the rletwo

The volume of traffic flowing between any two zones is genérbtemodule 2. In this module, a
text-based production/attraction file represents theckekilume flowing out of and into each
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zone. Of course, vehicle movement between zones occurseri@adway network. If the vehicle
volume on a roadway link exceeds its capacity, that link isstdered to be congested. This link
may then be targeted for capacity increase in the solutioogalure.

Module 3 holds a link-capacity data file that contains an aghwae list of the link classification
codes and their definitions. Thus, to change link capadittes one simulation-optimization
iteration to the next, the classification code of a link mwesttiered in the network configuration
file, which is then translated by the link-capacity data Beecifically, the values in this file
define the vehicle capacity of each road segment in the nkepagainst which vehicle volume is
measured to determine if congestion is present.

In module 4, the path for each vehicle from its origin to itstileation is determined. The goal is
to minimize the sum of all vehicle travel times on a particuatwork configuration. This is
accomplished by establishing a network equilibrium thathe context of transportation
assignments, occurs when no vehicle trip can be made byemaitié path without increasing the
total travel time of all vehicles in the network. More spezafly, the model assigns a vehicle from
origin to destination using a shortest-path algorithm sidjd for congestion. The initial
assignment assigns all trips between origin and destm&ications on the shortest roadway.
Then the volume assigned to the roadway is compared to tlaeitppf the facility, and a new
travel time is developed using a capacity restraint curvpoAion of the assigned model volume
is then moved to an alternate path if the new travel time iatgrehan the original travel time.
This calculation of travel time for individual roadway lisks performed, and the trips are
adjusted until the change of travel time between specifiteois equal. The output from module
4 (i.e. total vehicle hours on the network) is used by therjzier to compare the effectiveness of
congestion-mitigation strategies.

During the first iteration of the simulation-optimizatioropedure, each module is invoked.
However, in subsequent iterations in which different catige-mitigation strategies are being
evaluated by the simulation model, only modules 1, 3, anc4raoked. This is a result of only
the network configuration file being altered from one itenatio the next. The production and
attraction between network zones remains constant thoaudghe execution of the solution
procedure.

14



Section 6
Experimentation

In this section, we test our solution methodology using donadraffic scenario and data set from
Mobile, AL, an urban environment situated on the coast ofa#é of Mexico. This region makes
for an excellent testbed due to its expected growth overeéie2b years. Despite the recent
global economic downturn, this region is experiencing ecoic growth, especially in the areas
of manufacturing and freight movement, where the Port of Mdb becoming a major access
point to the eastern United States for global firms. This eatin upturn will create more jobs in
the area which, in turn, will increase the population in thgion and the volume of private
vehicles on the roadway network. Along with the increasadroercial traffic, traffic congestion
is certain to worsen over time. Figure 4 shows the currer@{2and predicted (2030) traffic
congestion locations on the Mobile roadway network.

(a) Mobile network (2007) (b) Mobile network (2030)

Figure 4: Mobile, AL roadway congestion

The darkened areas on the traffic network links representgof congestion. A thicker link
indicates greater congestion. By examination of Figuréid,avident that a considerable increase
in congestion is forecast for the roadways by 2030. Thusmwestigate the performance of our
solution approach on the 2030 network in terms of soluticalityu(i.e. percent decrease in
congestion) and computational run time.
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To simplify the presentation of the experimentation, a rodecwas designed to describe for each
outcome the solution initialization method, the type ofrsbalgorithm used, the method of link
exchange in a solution vector, and the neighborhood sizesofion. In the run code, the first
character is a “G” or “R” to denote if the initial solution wgenerated using a greedy or random
technique. The second character is a “T” or “L” to designatabu search or local search was the
solution strategy. The third and fourth characters are RSS”, or “TS” to specify whether
Random Swap, One Swap, or Two-Random Swap was used as tihkorigod-search strategy.
Run codes with a fifth, sixth, and possibly seventh charaefmesent the number of neighbor
solutions in each iteration (e.g. 5N represents a neigldmatsize of 5). To illustrate, a run code
of GTRS5N translates to a solution run using a greedy tecteniior initialization, tabu search as
the solution strategy, random swap for the neighborhooatkeand a neighborhood size of 5. In
the local-search implementation, we set the failure limfive iterations. Finally, the termination
criterion for the simulation-optimization procedure is aximum of 300 iterations.

6.1 Traffic-Congestion Savings

In this section, we present the results of our algorithmprapaches in terms of the percent
decrease in traffic congestion that would be realized wighrtiplementation of the mitigation
strategy suggested by each experimental run. After catgaritwith the director of the Mobile
Metropolitan Planning Organization, we concentrated emtlitigation strategy of adding lanes
as a means to increase capacity of roadways. Although thelzer mitigation strategies
available, such as the addition of high-occupancy vehales and reversible lanes, their
representation as a mitigation strategy would also takéotime of a roadway-capacity increase.
In terms of cost, the addition of a lane (in each directior§5£00,000 per mile. Table 1 shows
the top 20 solutions in terms of congestion savings.

This experimentation is based on the 2030 network congestiown in Figure 4, where the
predicted congestion level translates to 357,836 totaktlehours and the non-congested level to
307,461 total vehicle hours. The values reported in Tablpiasent the savings that would be
realized in 2030 if the strategy suggested by an experirhamtgsubject to a budgetary
constraint of $25 million) were implemented. From Tablehk, naximum savings of total

vehicle hours is 4.26% (i.e. 355,691 total vehicle hours).

The congestion savings are calculated with respect to tlreiahof congestion expected to be
present on the network in 2030, which is the difference ialte¢hicle hours between the
congested network and non-congested network. To explicdticulate, the amount of expected
congestion is 50,375 vehicle hou57,836— 307,461). Thus, a 4.26% congestion savings is
calculated a$357,836— 355,691) /50,375. The total vehicle hours on the non-congested
network (i.e. 307,461) is the lower bound on the network} asriot possible to completely
eliminate vehicle hours on the network. Thus, this valuaukhbe used in any congestion-savings
calculation.

From a methodological viewpoint, the tabu-search strapegforms much better than the
local-search strategy with 18 of the top 20 solutions basei@lou search. This is not unexpected;
tabu search should generally find better solutions becabses ia mechanism to avoid becoming
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Table 1: Traffic-congestion savings and computationalimmperformance

Run Code | Total Vehicle Hours | Congestion Savings Run Time (sec)
GTRSON 355,691 4.26% 5,483
GTRS10N 355,733 4.17% 6,541
RTRS6N 355,779 4.08% 5,488
RTOS 355,818 4.01% 8,872
GTRS7N 355,824 3.99% 4,103
RTRS8N 355,848 3.95% 6,812
GTTS 355,880 3.88% 6,630
GTRS6N 355,892 3.86% 3,651
RTRS10N 355,912 3.82% 7,488
GTRSS8N 355,971 3.70% 5,137
GTOS 355,971 3.70% 11,540
RTRSON 356,052 3.54% 6,979
RTRS5N 356,064 3.52% 3,798
RLRS10N 356,072 3.50% 439
GTRS5N 356,078 3.49% 3,086
RTRS4N 356,192 3.26% 2,266
GTRS4N 356,234 3.18% 2,444
RLRSON 356,288 3.07% 861
GTRS3N 356,290 3.07% 1,714
RTTS 356,291 3.07% 5,662
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trapped in local optima. Thus, the tabu-search strategyylié&xplores more of the solution space
and finds better overall solutions. It is also of note thatitber solutions tend to have larger
neighborhood sizes. This is not surprising since a largghh@rhood size also allows for greater
exploration of the solution space during each iteratiorhefgolution procedure.

6.2 Methodological Comparison
In this section, we investigate the performance of our atligric approaches in terms of
computational run time and selection of search parameters.

Table 1 shows the computational run times for the top 20 swiatin terms of congestion savings,
but no obvious trends appear. Figure 5 displays the datagatéesplot for re-examination. From

4.50%
g MR
< 4.00% * *
& ¢ ‘.
S 2 2
©
Q2 3.50% 4 T *
o
8
: oo®
£ 3.00% * .
(9]
2-50% T T T T T T 1
0 2,000 4,000 6000 8000 10,000 12,000 14,000
Run time (sec.)

Figure 5: Congestion savings vs. run time scatterplot

the scatterplot, a general upward trend is noticeable.Haratords, congestion savings increase
as run times increase. This outcome makes sense, as lesestch procedures tend to find
better solutions the longer they run. The minimum run tim&398 seconds while the maximum
run time is 11,540 seconds. The solution with the greatesjestion savings (i.e. 4.26%) has a
run time of 5,483 seconds, but even the solution with the hwen time shows significant
congestion savings of 3.50%. This demonstrates the abilitiyis solution approach to generate
guality solutions in a short time. This characteristic mayolbgreat importance if the evaluation
of mitigation strategies is time sensitive, such as duridgaster event. The solution approach
would also be of tremendous benefit in the long-term planofrtgansportation networks.
Typically, analysis of alternatives in transportationrplang takes several months to perform.
However, with a decision support tool based on simulatidim@pation, evaluation time can be
greatly reduced even when considering the worst case fesuitTable 1 (i.e. 11,540 seconds, or
about 3.20 hours).
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Table 2 shows the effect of neighborhood size on solutiorckestrategy (i.e. tabu search and
local search) in terms of solution quality (total vehiclauihg) and computational run time (in
seconds).

Table 2: Neighborhood-size comparison

Tabu Search Local Search
Greedy Initial Random Initial Greedy Initial Random Initial
IAll]| TVH | RunTime | TVH |RunTime | TVH | RunTime | TVH | RunTime

1 | 356,852 539 356,883 514 357,558 53 357,567 49
2 | 356,709| 1,125 356,412 1,228 357,145 171 357,410 138
3| 356,290 1,714 356,561 1,605 356,607 198 357,202 191
4 | 356,234| 2,444 356,192| 2,266 357,003 198 356,903 253
51| 356,078| 3,086 356,064 3,798 356,345 539 356,790 261
6 | 355,892| 3,651 355,779 5,488 356,881 271 356,702 342
7| 355,824| 4,103 356,314 4,118 356,374 507 357,204 203
8 | 355,971| 5,137 355,848| 6,812 356,366 640 356,574 507
9| 355,691| 5,483 356,052| 6,979 356,674 382 356,288 861
10 | 355,733| 6,541 355,912 7,488 356,976 555 356,072 439

Examining Table 2, run times increase, in general, as thghberhood size|(\(|) increases. This
is expected because an increasenf) means more solutions are being evaluated by the
simulation model during each iteration of the solution ehere. Furthermore, for each value of
|A(], the best network time (i.e. lowest total vehicle hourspisifd using a strategy based on tabu
search. This result is likely due to the diversity of triallgmns sent to the simulation model by
the tabu-search algorithm, as opposed to the focused sealoyed by the local-search—based
strategy. Lastly, for each value pi(|, local search provides solutions in shorter times than tabu
search. This outcome is likely due to the local-search ghoeterminating as a result of
becoming stalled at a local minimum and not providing imjmgwolutions for several
consecutive iterations (i.e. non-improving iterationitiexceeded). However, in some test
instances, local search does provide a quality solution &vihuch shorter run time when
compared to tabu search.
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Section 7
Conclusions and Future Work

In this paper, we develop a simulation-optimization apphofar a decision support tool to help
determine the best strategies to mitigate the congestiovaofivay networks. The optimization
approach utilizes both tabu-search and local-search iggobs1to work in concert with a
traffic-simulation model to explore the solution space.sTdpproach is useful in determining the
best set of roadway segments in which to implement mitigagtcategies while adhering to
budgetary constraints. This is especially useful for urdaah regional transportation planners
who have a large number of alternatives to consider. Comgitiie benefits of optimization and
simulation, the overall solution approach provides anaased ability to investigate a large
number of mitigation alternatives in a short period of tiroa the order of hours) as opposed to
typical alternative evaluations that take months to comeple

As a future research direction, we look to expand on the nuimfo@itigation strategies available
as well as investigate the possibility of regional trangdtems to aid in the mitigation of traffic
congestion. Furthermore, we plan to extend this work intocetfea of emergency and disaster
response. During events where response time is critidalprtethodology would serve as a way
to examine response strategies in terms of maximizing thefii¢o those affected by the
disruptive event.
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